RCP209 | Apprentissage statistique : modélisation décisionnelle et apprentissage profond
51
Total d'heures d'enseignement6
Crédits ECTS16/09/2024
Début des cours prévuProgramme
Les thèmes abordés dans les séances de cours et de travaux pratiques (TP) sont :- Bases de l'apprentissage supervisé : qu'est-ce qu'un modèle décisionnel ?
- Évaluation et sélection de modèles.
- Arbres de décision et forêts d'arbres de décision (random forest).
- Machines à vecteurs de support (SVM) : discrimination, régression, estimation du support d'une distribution, ingénierie des noyaux.
- Réseaux de neurones artificiels :
- apprentissage de représentations
- apprentissage profond (deep learning)
- réseaux convolutifs
- réseaux récurrents
Chaque séance de cours est suivie d'une séance de travaux pratiques (TP) permettant de mettre en oeuvre les méthodes présentées. Les TP sont réalisés à l'aide du langage de programmation Python, en utilisant les bibliothèques logicielles Scikit-learn et Keras. Une introduction à Scikit-learn et à Keras est prévue lors des séances de TP.
Objectifs : aptitudes et compétences
Ce cours présente les méthodes modernes de modélisation décisionnelle à partir des données, notamment les machines à vecteurs supports (SVM), les forêts aléatoires et les réseaux de neurones profonds, en vue de leur utilisation dans des applications réelles.L'apprentissage automatique ou (machine learning) permet de construire, à partir de jeux de données empiriques, des modèles pour la prise de décision. Les méthodes abordées font partie des techniques modernes pour l'intelligence artificielle et ont de très nombreuses applications dans des domaines aussi divers que l'assurance qualité, le diagnostic médical, les véhicules autonomes, la bio-ingénierie, la climatologie, la sécurité environnementale, le marketing, la gestion de la relation client, la recherche d'information, etc. Modélisation décisionnelle à partir de données, avec application à la reconnaissance de formes et à la fouille de données.
Prérequis
Cet enseignement s'adresse aux auditeurs et auditrices souhaitant se former à l'apprentissage statistique, notamment à l'apprentissage profond et aux réseaux de neurones artificiels.- avoir un niveau équivalent licence en mathématiques (algèbre linéaire, probabilités, statistiques, analyse) et en informatique (savoir programmer),
- Avoir suivi la première partie du cycle spécialisation de l'EICNAM ou avoir le niveau M1 (Bac + 4) est suffisant.
- Le langage de programmation utilisé durant le cours est Python.
- Il est recommandé d'avoir suivi au préalable l'UE RCP208 « Apprentissage statistique : modélisation descriptive et introduction aux réseaux de neurones » ou un enseignement équivalent comportant une présentation des méthodes de base d'analyse des données et de modélisation descriptive des données.
Délais d'accès
Le délai d'accès à la formation correspond à la durée entre votre inscription et la date du premier cours de votre formation.
- UE du 1er semestre et UE annuelle : inscription entre mai et octobre
- UE du 2e semestre : inscription de mai jusqu'à mi-mars
Exemple : Je m'inscris le 21 juin à FPG003 (Projet personnel et professionnel : auto-orientation pédagogique). Le premier cours a lieu le 21 octobre. Le délai d'accès est donc de 4 mois.
Planning
RCP209 | Apprentissage statistique : modélisation décisionnelle et apprentissage profond 6 ECTS 51 heures |
Semestre 1 | Semestre 1 | Semestre 1 | |||||||||||||||
Certaines unités d'enseignement nécessitent des prérequis. Cliquez sur le titre de l'UE ci-dessus pour en savoir plus.
|
Modalités
Modalités pédagogiques :
Pédagogie qui combine apports académiques, études de cas basées sur des pratiques professionnelles et expérience des élèves. Équipe pédagogique constituée pour partie de professionnels. Un espace numérique de formation (ENF) est utilisé tout au long du cursus.
Modalités d'évaluation :
L'UE est évaluée sur un projet personnel et un examen écrit. La note finale est la moyenne entre la note obtenue au projet et la note obtenue à l'examen.Projet et examen final sur table
Pour valider cette UE, vous devez obtenir une note minimale de 10/20
Tarif
Mon employeur finance | Pôle Emploi finance | Je finance avec le co-financement Région | |
1.020 € | 510 € | Salarié : 156 € | Demandeur d'emploi : 124,80 € |
Plusieurs dispositifs de financement sont possibles en fonction de votre statut et peuvent financer jusqu'à 100% de votre formation.
Salarié : Faites financer votre formation par votre employeur
Demandeur d’emploi : Faites financer votre formation par Pôle emploi
Votre formation est éligible au CPF ? Financez-la avec votre CPF
Si aucun dispositif de financement ne peut être mobilisé, nous proposons à l’élève une prise en charge partielle de la Région Nouvelle-Aquitaine avec un reste à charge. Ce reste à charge correspond au tarif réduit et est à destination des salariés ou demandeurs d’emploi.
Pour plus de renseignements, consultez la page Financer mon projet formation ou contactez nos conseillers pour vous accompagner pas à pas dans vos démarches.
Passerelles : lien entre certifications
Avis des auditeurs
Les dernières réponses à l'enquête d'appréciation de cet enseignement :
Fiche synthétique au format PDF
Taux de réussite
Les dernières informations concernant le taux de réussite des unités d’enseignement composant les diplômes
Besoin d'aide dans vos démarches ?
L'équipe du Cnam Nouvelle-Aquitaine est là pour vous aider